Transaction Details
Tx Hash:
QiPzEk6AcYpzeUKAYxoS8f
Status:
OnChain
Block:
Bundler:
0xF5d3B0bF5C6F4bEC970679Ee78caDbeA8bb72417
Timestamp:
Jun.11.2024 02:48:03 AM
Caller:
0xa550c6011dfba4925abeb0b48104062682870bb8
Signature:
0x28bda9cae23b6f3afb055328421cf895e91575dedba31417a271e0f97d3eed6323d37f3b64c15f1d5441d1193b0ac539586e3c5d2d6f09235f17f76410b3a1f21c
SepId:
4195
Namespace:
publicai01
Dataset:
Collection:
Action:
insertOne
Document:
{
"chat": "[{\"id\":\"aaa262ae-1ca5-482b-9705-80b197d9a0cc\",\"role\":\"user\",\"content\":\"construct a heat map for correlation\"},{\"id\":\"b5acdc8f-bd46-4145-89c9-67409b794c4f\",\"role\":\"assistant\",\"content\":\"Creating a heat map for correlation involves several steps. To illustrate this, let's assume you have a dataset and want to visualize the correlation matrix as a heat map. Here is a step-by-step guide on how to do this using Python and the seaborn library, which is built on top of matplotlib and pandas.\\n\\nSteps:\\nLoad your dataset: Import your data using pandas.\\nCompute the correlation matrix: Use the corr() function in pandas.\\nCreate the heat map: Use the seaborn.heatmap() function.\\nExample:\\n\\nLet's create a heat map using an example dataset, such as the well-known Iris dataset.\\n\\nInstall necessary libraries:\\nIf you haven't already installed the libraries, you can install them using:\\n\\nbash\\nCopy code\\npip install seaborn pandas matplotlib\\n\\n\\nLoad the dataset and compute the correlation matrix:\\n\\npython\\nCopy code\\nimport pandas as pd\\nimport seaborn as sns\\nimport matplotlib.pyplot as plt\\n\\n# Load the dataset\\ndf = sns.load_dataset('iris')\\n\\n# Compute the correlation matrix\\ncorr_matrix = df.corr()\\n\\n# Plot the heat map\\nplt.figure(figsize=(10, 8))\\nsns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)\\nplt.title('Correlation Heat Map')\\nplt.show()\\n\\nDetailed Steps Explanation:\\n\\nLoad the dataset: Here, we use sns.load_dataset('iris') to load the Iris dataset directly from seaborn's built-in datasets.\\n\\nCompute the correlation matrix:\\n\\npython\\nCopy code\\ncorr_matrix = df.corr()\\n\\n\\nThe corr() function computes the pairwise correlation of columns in the DataFrame.\\n\\nCreate the heat map:\\n\\nplt.figure(figsize=(10, 8)): Sets the size of the figure.\\nsns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0): Plots the heat map with annotations (correlation values), using the 'coolwarm' colormap and centering the colormap at 0.\\nplt.title('Correlation Heat Map'): Sets the title of the heat map.\\n\\nThis script will produce a heat map that visually represents the correlation coefficients between the variables in the Iris dataset. The coolwarm colormap is used to better distinguish positive and negative correlations.\\n\\nIf you have your own dataset, you can replace the dataset loading step with your data file, for example:\\n\\npython\\nCopy code\\ndf = pd.read_csv('your_data.csv')\\n\\n\\nWould you like me to run the code and generate a sample heat map for you? If you have a specific dataset you'd like to use, please provide it.\"}]",
"evmAddress": "0xbD9895e9096243F6D51Bb4Ab0C48Fe649a8D8d7B",
"evmAddressEmbedding": [
-0.040606118738651276,
0.032906729727983475,
-0.03222500905394554,
-0.0238295067101717,
-0.019137609750032425,
0.02819306217133999,
0.12083624303340912,
0.018982453271746635,
0.010903876274824142,
-0.050404105335474014,
0.03235702961683273,
-0.12971945106983185,
0.005054117180407047,
0.049022506922483444,
-0.07100139558315277,
0.0028621761593967676,
-0.08692454546689987,
-0.11866036057472229,
-0.09692493081092834,
0.02780371904373169,
0.01714441366493702,
-0.02888532355427742,
-0.10670550912618637,
-0.05221066623926163,
-0.0177140049636364,
-0.027597209438681602,
0.012189209461212158,
0.0405159592628479,
0.00765487365424633,
-0.10870340466499329,
0.0942990630865097,
0.0894421935081482,
0.06344520300626755,
-0.020262474194169044,
0.09258842468261719,
0.028471730649471283,
0.02457428351044655,
-0.06064451113343239,
0.034250903874635696,
-0.027730228379368782,
0.04382674768567085,
-0.01565367542207241,
0.0943833589553833,
0.09283418953418732,
0.0018154137069359422,
0.0434923991560936,
0.0145085034891963,
-0.009487868286669254,
-0.00913950614631176,
-0.016385966911911964,
0.018616503104567528,
0.025572843849658966,
-0.06203857809305191,
0.03011223115026951,
0.05562280863523483,
0.0008448208100162446,
-0.006649155635386705,
0.004665285348892212,
0.047397125512361526,
0.017766285687685013,
0.07401958107948303,
0.0017567507456988096,
0.030194293707609177,
-0.04298350214958191,
0.007885186932981014,
0.047399699687957764,
-0.08796641230583191,
-0.16739588975906372,
-0.03915910795331001,
-0.06215836480259895,
-0.03777366876602173,
0.0810484066605568,
0.004789603874087334,
0.009424805641174316,
0.02192879281938076,
-0.014166240580379963,
-0.04698345810174942,
-0.03621980920433998,
0.03415551781654358,
-0.020654333755373955,
-0.0713195726275444,
-0.0650116577744484,
-0.0006729858578182757,
0.061504241079092026,
0.033467307686805725,
0.009607762098312378,
-0.024216124787926674,
-0.020534424111247063,
0.022904856130480766,
-0.008637482300400734,
0.00023263083130586892,
0.03729446604847908,
-0.0032640714198350906,
-0.03433966636657715,
-0.07326652854681015,
0.06766379624605179,
0.0780186876654625,
-0.017955973744392395,
-0.13033261895179749,
0.15140141546726227,
-0.03353054076433182,
0.03412201628088951,
-0.008541928604245186,
0.04022711142897606,
0.022502418607473373,
-0.03970871493220329,
-0.0017710138345137239,
0.0635172426700592,
-0.05608246847987175,
-0.037938717752695084,
-0.08619129657745361,
0.0030632605776190758,
-0.03317829221487045,
0.002118158619850874,
0.06500133872032166,
-0.040418051183223724,
-0.04452583193778992,
0.03081156685948372,
0.022979844361543655,
-0.06831981986761093,
0.07855873554944992,
-0.027329089120030403,
-0.02298572100698948,
-0.01595946215093136,
-0.1822698414325714,
-0.06368796527385712,
-0.027987297624349594,
1.872347826204085e-32,
-0.03999714180827141,
-0.03674579784274101,
0.02056422270834446,
-0.01028115302324295,
-0.02332543209195137,
0.04131102189421654,
-0.008553370833396912,
0.0036367089487612247,
-0.013297053053975105,
0.010768664069473743,
-0.07518862932920456,
-0.021575788035988808,
0.055054523050785065,
0.03720469772815704,
0.018154853954911232,
-0.0855226218700409,
0.013491365127265453,
0.08857066184282303,
-0.06151755526661873,
-0.0025112673174589872,
0.03725985437631607,
0.057467177510261536,
-0.0032824294175952673,
-0.013150878250598907,
-0.006234669126570225,
0.07720236480236053,
0.001638045534491539,
-0.07548096776008606,
0.08562298864126205,
0.022399738430976868,
0.024465372785925865,
0.014812761917710304,
-0.093388631939888,
-0.04605630040168762,
0.030046338215470314,
0.03773386776447296,
-0.0060314214788377285,
-0.012045119889080524,
-0.04591637849807739,
-0.006092867348343134,
0.016152702271938324,
-0.04774511232972145,
-0.06985419988632202,
-0.04823515936732292,
0.016059186309576035,
-0.029170356690883636,
0.023044517263770103,
0.03494822978973389,
0.08653364330530167,
0.04563286527991295,
-0.06078512594103813,
0.028481092303991318,
-0.023349665105342865,
-0.045192889869213104,
-0.012759077362716198,
-0.031169505789875984,
-0.029444372281432152,
0.024266541004180908,
-0.03442961350083351,
0.0008029628661461174,
0.05146123468875885,
0.0493883453309536,
-0.023524126037955284,
-0.07424429804086685,
0.040805332362651825,
-0.07109785079956055,
0.0229338426142931,
-0.08710407465696335,
-0.0010044403607025743,
-0.053375180810689926,
-0.03375149145722389,
-0.03045511059463024,
0.132053941488266,
0.013026908040046692,
-0.036797989159822464,
-0.03709326684474945,
-0.014358573593199253,
-0.0385424941778183,
-0.0828876793384552,
0.0020904794801026583,
-0.019689878448843956,
-0.020286263898015022,
-0.04385564103722572,
-0.07630470395088196,
-0.06893696635961533,
0.0819675400853157,
-0.01729768142104149,
-0.05295652523636818,
-0.04480626806616783,
0.004402430262416601,
-0.04694715514779091,
0.01673036254942417,
0.0007187156588770449,
-0.05869397893548012,
-0.05544884502887726,
-1.8333988494471456e-32,
-0.009486991912126541,
-0.021627774462103844,
-0.038135334849357605,
-0.05425003543496132,
-0.005025018006563187,
-0.03495661914348602,
0.011107105761766434,
-0.0066681355237960815,
0.10818380862474442,
0.015005876310169697,
0.036480601876974106,
-0.04084545746445656,
-0.003446361981332302,
-0.07908178865909576,
0.015792367979884148,
0.03631439432501793,
0.050811346620321274,
0.01769210956990719,
0.013665926642715931,
0.022790944203734398,
-0.031135115772485733,
0.14562611281871796,
-0.029656080529093742,
0.07271429896354675,
-0.03737235814332962,
0.047026459127664566,
0.05851777642965317,
0.05025482177734375,
0.039990417659282684,
-0.008913649246096611,
0.00546684768050909,
-0.030339963734149933,
-0.02320871688425541,
0.11166055500507355,
-0.07586418837308884,
-0.04609306529164314,
0.08670901507139206,
0.0026538840029388666,
0.03247278183698654,
-0.036519575864076614,
0.01904931664466858,
0.03837583586573601,
-0.030671723186969757,
0.07609125971794128,
0.045328591018915176,
0.03721953183412552,
-0.03845623880624771,
-0.005941273178905249,
0.019497515633702278,
0.07757262885570526,
0.0347277894616127,
-0.047946348786354065,
-0.0838932991027832,
0.0013815591810271144,
0.01812010072171688,
0.04274890571832657,
0.0009733100305311382,
0.019297387450933456,
0.06729234009981155,
-0.025780998170375824,
0.09514636546373367,
0.04618097469210625,
0.03778912499547005,
0.041634347289800644,
0.01950955018401146,
-0.04946256801486015,
-0.046140406280756,
-0.020583918318152428,
-0.03977582976222038,
-0.04784331098198891,
0.018800735473632812,
0.010090810246765614,
-0.06926083564758301,
0.01848704181611538,
0.09507289528846741,
0.009529998525977135,
0.028063924983143806,
0.04336630553007126,
-0.032003987580537796,
0.058513399213552475,
0.010337943211197853,
0.06072369962930679,
0.017360202968120575,
-0.016881288960576057,
-0.02597711980342865,
-0.06107262894511223,
0.08128999173641205,
0.10344254225492477,
0.007131203077733517,
-0.11356976628303528,
-0.03853226453065872,
0.012690626084804535,
0.017459727823734283,
-0.044124897569417953,
0.073566734790802,
-4.958375399155557e-8,
-0.022443849593400955,
-0.03393043577671051,
-0.025298329070210457,
-0.013562946580350399,
0.07594770938158035,
0.008480813354253769,
-0.04269227758049965,
-0.08044835925102234,
0.01560913398861885,
-0.044740453362464905,
0.03754998743534088,
-0.01481423620134592,
-0.06312663108110428,
0.0009699625079520047,
-0.024033529683947563,
-0.06063072755932808,
-0.11375311017036438,
0.0378740131855011,
-0.029516486451029778,
-0.049037665128707886,
0.03357606381177902,
-0.03923927620053291,
-0.016056226566433907,
-0.0706058144569397,
0.001442195032723248,
-0.10253830254077911,
0.028852730989456177,
0.0679553672671318,
-0.009474259801208973,
0.032458774745464325,
-0.03435153141617775,
0.015820173546671867,
-0.022638728842139244,
-0.08555690199136734,
0.0381971150636673,
0.07713580876588821,
0.039759762585163116,
0.05879828706383705,
0.037755418568849564,
-0.023910297080874443,
-0.0028446975629776716,
-0.0343451052904129,
0.06245347857475281,
0.002578835468739271,
-0.012321838177740574,
-0.027800237759947777,
-0.030212361365556717,
0.054910846054553986,
0.01174969132989645,
-0.0727168396115303,
-0.07898739725351334,
0.032415010035037994,
0.008475137874484062,
-0.002702804747968912,
-0.06508909165859222,
0.022102346643805504,
-0.08944705128669739,
0.061039164662361145,
-0.019886357709765434,
0.07352015376091003,
0.05529995635151863,
0.07602347433567047,
-0.04340679943561554,
-0.07106965780258179
],
"tweet": "null"
}