Transaction Details
Tx Hash:
BMfLRkwwwuqwwZp8N8NhxX
Status:
OnChain
Block:
Bundler:
0xF5d3B0bF5C6F4bEC970679Ee78caDbeA8bb72417
Timestamp:
Jun.07.2024 08:37:02 AM
Caller:
0xa550c6011dfba4925abeb0b48104062682870bb8
Signature:
0x2584150704d49e1d00154753ab9572ea8afe2e96a3b250fb9940b94adb21a2903ec6bce1f2c71d28451d054564a5521c15570aec2f55c76634f997a79f13d9b11b
SepId:
722
Namespace:
publicai01
Dataset:
Collection:
Action:
insertOne
Document:
{
"chat": "[{\"id\":\"aaa262ae-1ca5-482b-9705-80b197d9a0cc\",\"role\":\"user\",\"content\":\"construct a heat map for correlation\"},{\"id\":\"b5acdc8f-bd46-4145-89c9-67409b794c4f\",\"role\":\"assistant\",\"content\":\"Creating a heat map for correlation involves several steps. To illustrate this, let's assume you have a dataset and want to visualize the correlation matrix as a heat map. Here is a step-by-step guide on how to do this using Python and the seaborn library, which is built on top of matplotlib and pandas.\\n\\nSteps:\\nLoad your dataset: Import your data using pandas.\\nCompute the correlation matrix: Use the corr() function in pandas.\\nCreate the heat map: Use the seaborn.heatmap() function.\\nExample:\\n\\nLet's create a heat map using an example dataset, such as the well-known Iris dataset.\\n\\nInstall necessary libraries:\\nIf you haven't already installed the libraries, you can install them using:\\n\\nbash\\nCopy code\\npip install seaborn pandas matplotlib\\n\\n\\nLoad the dataset and compute the correlation matrix:\\n\\npython\\nCopy code\\nimport pandas as pd\\nimport seaborn as sns\\nimport matplotlib.pyplot as plt\\n\\n# Load the dataset\\ndf = sns.load_dataset('iris')\\n\\n# Compute the correlation matrix\\ncorr_matrix = df.corr()\\n\\n# Plot the heat map\\nplt.figure(figsize=(10, 8))\\nsns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0)\\nplt.title('Correlation Heat Map')\\nplt.show()\\n\\nDetailed Steps Explanation:\\n\\nLoad the dataset: Here, we use sns.load_dataset('iris') to load the Iris dataset directly from seaborn's built-in datasets.\\n\\nCompute the correlation matrix:\\n\\npython\\nCopy code\\ncorr_matrix = df.corr()\\n\\n\\nThe corr() function computes the pairwise correlation of columns in the DataFrame.\\n\\nCreate the heat map:\\n\\nplt.figure(figsize=(10, 8)): Sets the size of the figure.\\nsns.heatmap(corr_matrix, annot=True, cmap='coolwarm', center=0): Plots the heat map with annotations (correlation values), using the 'coolwarm' colormap and centering the colormap at 0.\\nplt.title('Correlation Heat Map'): Sets the title of the heat map.\\n\\nThis script will produce a heat map that visually represents the correlation coefficients between the variables in the Iris dataset. The coolwarm colormap is used to better distinguish positive and negative correlations.\\n\\nIf you have your own dataset, you can replace the dataset loading step with your data file, for example:\\n\\npython\\nCopy code\\ndf = pd.read_csv('your_data.csv')\\n\\n\\nWould you like me to run the code and generate a sample heat map for you? If you have a specific dataset you'd like to use, please provide it.\"}]",
"evmAddress": "0xbD9895e9096243F6D51Bb4Ab0C48Fe649a8D8d7B",
"evmAddressEmbedding": [
-0.040606118738651276,
0.032906729727983475,
-0.03222500905394554,
-0.0238295067101717,
-0.019137609750032425,
0.02819306217133999,
0.12083624303340912,
0.018982453271746635,
0.010903876274824142,
-0.050404105335474014,
0.03235702961683273,
-0.12971945106983185,
0.005054117180407047,
0.049022506922483444,
-0.07100139558315277,
0.0028621761593967676,
-0.08692454546689987,
-0.11866036057472229,
-0.09692493081092834,
0.02780371904373169,
0.01714441366493702,
-0.02888532355427742,
-0.10670550912618637,
-0.05221066623926163,
-0.0177140049636364,
-0.027597209438681602,
0.012189209461212158,
0.0405159592628479,
0.00765487365424633,
-0.10870340466499329,
0.0942990630865097,
0.0894421935081482,
0.06344520300626755,
-0.020262474194169044,
0.09258842468261719,
0.028471730649471283,
0.02457428351044655,
-0.06064451113343239,
0.034250903874635696,
-0.027730228379368782,
0.04382674768567085,
-0.01565367542207241,
0.0943833589553833,
0.09283418953418732,
0.0018154137069359422,
0.0434923991560936,
0.0145085034891963,
-0.009487868286669254,
-0.00913950614631176,
-0.016385966911911964,
0.018616503104567528,
0.025572843849658966,
-0.06203857809305191,
0.03011223115026951,
0.05562280863523483,
0.0008448208100162446,
-0.006649155635386705,
0.004665285348892212,
0.047397125512361526,
0.017766285687685013,
0.07401958107948303,
0.0017567507456988096,
0.030194293707609177,
-0.04298350214958191,
0.007885186932981014,
0.047399699687957764,
-0.08796641230583191,
-0.16739588975906372,
-0.03915910795331001,
-0.06215836480259895,
-0.03777366876602173,
0.0810484066605568,
0.004789603874087334,
0.009424805641174316,
0.02192879281938076,
-0.014166240580379963,
-0.04698345810174942,
-0.03621980920433998,
0.03415551781654358,
-0.020654333755373955,
-0.0713195726275444,
-0.0650116577744484,
-0.0006729858578182757,
0.061504241079092026,
0.033467307686805725,
0.009607762098312378,
-0.024216124787926674,
-0.020534424111247063,
0.022904856130480766,
-0.008637482300400734,
0.00023263083130586892,
0.03729446604847908,
-0.0032640714198350906,
-0.03433966636657715,
-0.07326652854681015,
0.06766379624605179,
0.0780186876654625,
-0.017955973744392395,
-0.13033261895179749,
0.15140141546726227,
-0.03353054076433182,
0.03412201628088951,
-0.008541928604245186,
0.04022711142897606,
0.022502418607473373,
-0.03970871493220329,
-0.0017710138345137239,
0.0635172426700592,
-0.05608246847987175,
-0.037938717752695084,
-0.08619129657745361,
0.0030632605776190758,
-0.03317829221487045,
0.002118158619850874,
0.06500133872032166,
-0.040418051183223724,
-0.04452583193778992,
0.03081156685948372,
0.022979844361543655,
-0.06831981986761093,
0.07855873554944992,
-0.027329089120030403,
-0.02298572100698948,
-0.01595946215093136,
-0.1822698414325714,
-0.06368796527385712,
-0.027987297624349594,
1.872347826204085e-32,
-0.03999714180827141,
-0.03674579784274101,
0.02056422270834446,
-0.01028115302324295,
-0.02332543209195137,
0.04131102189421654,
-0.008553370833396912,
0.0036367089487612247,
-0.013297053053975105,
0.010768664069473743,
-0.07518862932920456,
-0.021575788035988808,
0.055054523050785065,
0.03720469772815704,
0.018154853954911232,
-0.0855226218700409,
0.013491365127265453,
0.08857066184282303,
-0.06151755526661873,
-0.0025112673174589872,
0.03725985437631607,
0.057467177510261536,
-0.0032824294175952673,
-0.013150878250598907,
-0.006234669126570225,
0.07720236480236053,
0.001638045534491539,
-0.07548096776008606,
0.08562298864126205,
0.022399738430976868,
0.024465372785925865,
0.014812761917710304,
-0.093388631939888,
-0.04605630040168762,
0.030046338215470314,
0.03773386776447296,
-0.0060314214788377285,
-0.012045119889080524,
-0.04591637849807739,
-0.006092867348343134,
0.016152702271938324,
-0.04774511232972145,
-0.06985419988632202,
-0.04823515936732292,
0.016059186309576035,
-0.029170356690883636,
0.023044517263770103,
0.03494822978973389,
0.08653364330530167,
0.04563286527991295,
-0.06078512594103813,
0.028481092303991318,
-0.023349665105342865,
-0.045192889869213104,
-0.012759077362716198,
-0.031169505789875984,
-0.029444372281432152,
0.024266541004180908,
-0.03442961350083351,
0.0008029628661461174,
0.05146123468875885,
0.0493883453309536,
-0.023524126037955284,
-0.07424429804086685,
0.040805332362651825,
-0.07109785079956055,
0.0229338426142931,
-0.08710407465696335,
-0.0010044403607025743,
-0.053375180810689926,
-0.03375149145722389,
-0.03045511059463024,
0.132053941488266,
0.013026908040046692,
-0.036797989159822464,
-0.03709326684474945,
-0.014358573593199253,
-0.0385424941778183,
-0.0828876793384552,
0.0020904794801026583,
-0.019689878448843956,
-0.020286263898015022,
-0.04385564103722572,
-0.07630470395088196,
-0.06893696635961533,
0.0819675400853157,
-0.01729768142104149,
-0.05295652523636818,
-0.04480626806616783,
0.004402430262416601,
-0.04694715514779091,
0.01673036254942417,
0.0007187156588770449,
-0.05869397893548012,
-0.05544884502887726,
-1.8333988494471456e-32,
-0.009486991912126541,
-0.021627774462103844,
-0.038135334849357605,
-0.05425003543496132,
-0.005025018006563187,
-0.03495661914348602,
0.011107105761766434,
-0.0066681355237960815,
0.10818380862474442,
0.015005876310169697,
0.036480601876974106,
-0.04084545746445656,
-0.003446361981332302,
-0.07908178865909576,
0.015792367979884148,
0.03631439432501793,
0.050811346620321274,
0.01769210956990719,
0.013665926642715931,
0.022790944203734398,
-0.031135115772485733,
0.14562611281871796,
-0.029656080529093742,
0.07271429896354675,
-0.03737235814332962,
0.047026459127664566,
0.05851777642965317,
0.05025482177734375,
0.039990417659282684,
-0.008913649246096611,
0.00546684768050909,
-0.030339963734149933,
-0.02320871688425541,
0.11166055500507355,
-0.07586418837308884,
-0.04609306529164314,
0.08670901507139206,
0.0026538840029388666,
0.03247278183698654,
-0.036519575864076614,
0.01904931664466858,
0.03837583586573601,
-0.030671723186969757,
0.07609125971794128,
0.045328591018915176,
0.03721953183412552,
-0.03845623880624771,
-0.005941273178905249,
0.019497515633702278,
0.07757262885570526,
0.0347277894616127,
-0.047946348786354065,
-0.0838932991027832,
0.0013815591810271144,
0.01812010072171688,
0.04274890571832657,
0.0009733100305311382,
0.019297387450933456,
0.06729234009981155,
-0.025780998170375824,
0.09514636546373367,
0.04618097469210625,
0.03778912499547005,
0.041634347289800644,
0.01950955018401146,
-0.04946256801486015,
-0.046140406280756,
-0.020583918318152428,
-0.03977582976222038,
-0.04784331098198891,
0.018800735473632812,
0.010090810246765614,
-0.06926083564758301,
0.01848704181611538,
0.09507289528846741,
0.009529998525977135,
0.028063924983143806,
0.04336630553007126,
-0.032003987580537796,
0.058513399213552475,
0.010337943211197853,
0.06072369962930679,
0.017360202968120575,
-0.016881288960576057,
-0.02597711980342865,
-0.06107262894511223,
0.08128999173641205,
0.10344254225492477,
0.007131203077733517,
-0.11356976628303528,
-0.03853226453065872,
0.012690626084804535,
0.017459727823734283,
-0.044124897569417953,
0.073566734790802,
-4.958375399155557e-8,
-0.022443849593400955,
-0.03393043577671051,
-0.025298329070210457,
-0.013562946580350399,
0.07594770938158035,
0.008480813354253769,
-0.04269227758049965,
-0.08044835925102234,
0.01560913398861885,
-0.044740453362464905,
0.03754998743534088,
-0.01481423620134592,
-0.06312663108110428,
0.0009699625079520047,
-0.024033529683947563,
-0.06063072755932808,
-0.11375311017036438,
0.0378740131855011,
-0.029516486451029778,
-0.049037665128707886,
0.03357606381177902,
-0.03923927620053291,
-0.016056226566433907,
-0.0706058144569397,
0.001442195032723248,
-0.10253830254077911,
0.028852730989456177,
0.0679553672671318,
-0.009474259801208973,
0.032458774745464325,
-0.03435153141617775,
0.015820173546671867,
-0.022638728842139244,
-0.08555690199136734,
0.0381971150636673,
0.07713580876588821,
0.039759762585163116,
0.05879828706383705,
0.037755418568849564,
-0.023910297080874443,
-0.0028446975629776716,
-0.0343451052904129,
0.06245347857475281,
0.002578835468739271,
-0.012321838177740574,
-0.027800237759947777,
-0.030212361365556717,
0.054910846054553986,
0.01174969132989645,
-0.0727168396115303,
-0.07898739725351334,
0.032415010035037994,
0.008475137874484062,
-0.002702804747968912,
-0.06508909165859222,
0.022102346643805504,
-0.08944705128669739,
0.061039164662361145,
-0.019886357709765434,
0.07352015376091003,
0.05529995635151863,
0.07602347433567047,
-0.04340679943561554,
-0.07106965780258179
],
"tweet": "null"
}