Transaction Details
Tx Hash:
9b3Q4yXTEUY2bpHKdnNB3U
Status:
OnChain
Block:
Bundler:
0xF5d3B0bF5C6F4bEC970679Ee78caDbeA8bb72417
Timestamp:
Nov.21.2023 01:52:34 PM
Caller:
0xfcfff8dc0e4a58f9161ddf044f5fa38b04937294
Signature:
0x297b9e59b06ac1a9673da0b25fd36ee281abcecae3d8e5e1a59bef2df9b5c8a214624d8c068c879bd03a9dd756c058315efde358f26afeffcd726833cad82ab61b
SepId:
2
Namespace:
Femi
Dataset:
Collection:
Action:
insertOne
Document:
{
  "Femi": "Initially, the epicenter of the SARS-CoV-2 pandemic was China, which reported a significant number of deaths associated with COVID-19, with 84,458 laboratory-confirmed cases and 4,644 deaths as of 13 May 2020 (Fig. 4). As of 13 May 2020, SARS-CoV-2 confirmed cases have been reported in more than 210 countries apart from China (Fig. 3 and 4) (WHO Situation Report 114) (25, 64). COVID-19 has been reported on all continents except Antarctica. For many weeks, Italy was the focus of concerns regarding the large number ofcases, with 221,216 cases and 30,911 deaths, but now, the United States is the country with the largest number of cases, 1,322,054, and 79,634 deaths. Now, the United Kingdom has even more cases (226,467 1) and deaths (32,692) than Italy. A John Hopkins University web platform has provided daily updates on the basic epidemiology of the COVID-19 outbreak \nCOVID-19 has also been confirmed on a cruise ship, named Diamond Princess, quarantined in Japanese waters (Port of Yokohama), as well as on other cruise ships around the world (239) (Fig. 3). The significant events of the SARS-CoV-2/COVID-19 virus outbreak occurring since 8 December 2019are presented as a timeline in Fig. 5.\nMajor events of current coronavirus COVID-19 disease outbreak\nINTRODUCTION\nOver the past 2 decades, coronaviruses (CoVs) have been associated with significant disease outbreaks in East Asia and the Middle East. The severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) began to emerge in 2002 and 2012, respectively. Recently, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), emerged in late 2019, and it has posed a global health threat, causing an ongoing pandemic in many countries and territories (1).\nHealth workers worldwide are currently making efforts to control further disease outbreaks caused by the novel CoV (originally named 2019-nCoV), which was first identified in Wuhan City, Hubei Province, China, on 12 December 2019. On 11 February 2020, the World Health Organization (WHO) announced the official designation for the current CoV-associated disease to be COVID-19, caused by SARS-CoV-2. The primary cluster of patients was found to be connected with the Huanan South China Seafood Market in Wuhan (2). CoVs belong to the family Coronaviridae (subfamily Coronavirinae), the members of which infect a broad\ntrimeric SI locates itself on top of the trimeric S2 stalk (45). Recently, structural analyses of the S proteins of COVID-19 have revealed 27 amino acid substitutions within a 1,273-amino-acid stretch (16). Six substitutions are located in the RBD (amino acids 357 to 528), while four substitutions are in the RBM at the CTD of the S1 domain (16). Of note, no amino acid change is seen in the RBM, which binds directly to the angiotensin-converting enzyme-2 (ACE2) receptor in SARS-CoV (16, 46). At present, the main emphasis is knowing how many differences would be required to change the host tropism. Sequence comparison revealed 17 nonsynonymous changes between the early sequence of SARS-CoV-2 and the later isolates of SARS-CoV. The changes were found scattered over the genome of the virus, with nine substitutions in ORFlab, ORF8 (4 substitutions), the spike gene (3 substitutions), and ORF7a (single substitution) (4). Notably, the same nonsynonymous changes were found in a familial cluster, indicating that the viral evolution happened during person-to-person transmission (4, 47). Such adaptive evolution events are frequent and constitute a constantly ongoing process once the virus spreads among new hosts (47). Even though no functional changes occur in the virus associated with this adaptive evolution, close monitoring of the viral \nabsence of this protein is related to the altered virulence of coronaviruses due to changes in morphology and tropism (54). The E protein consists of three domains, namely, a short hydrophilic amino terminal, a large hydrophobic transmembrane domain, and an efficient C-terminal domain (51). The SARS-CoV-2E protein reveals a similar amino acid constitution without any substitution (16).\nN Protein\nThe N protein of coronavirus is multipurpose. Among several functions, it plays a role in complex formation with the viral genome, facilitates M protein interaction needed during virion assembly, and enhances the transcription efficiency of the virus (55, 56). It contains three highly conserved and distinct domains, namely, an NTD, an RNA-binding domain or a linker region (LKR), and a CTD (57). The NTD binds with the 3' end of the viral genome, perhaps via electrostatic interactions, and is highly diverged both in length and sequence (58). The charged LKR is serine and arginine rich and is also known as the SR (serine and arginine) domain (59). The LKR is capable of direct interaction with in vitro RNA interaction and is responsible for cell signaling (60, 61). It also modulates the antiviral response of the host by working as an antagonist for interferon\nnsps and Accessory Proteins\nBesides the important structural proteins, the SARS-CoV-2 genome contains 15 nsps, nsp1 to nsp10 and nsp12 to nspl6, and 8 accessory proteins (3a, 3b, p6, 7a, 7b, 8b, 9b, and ORF14) (16). All these proteins play a specific role in viral replication (27). Unlike the accessory proteins of SARS-CoV, SARS-CoV-2 does not contain 8a protein and has a longer 8b and shorter 3b protein (16). The nsp7, nsp13, envelope, matrix, and pó and 8b accessory proteins have not been detected with any amino acid substitutions compared to the sequences of other coronaviruses (16).\nThe virus structure of SARS-CoV-2 is depicted in\nFig. 2.\n"
}